首页研究成果

研究成果

(一)代表性科研成果

软件著作权登记证书:

 

诊断程序开发软件v1.0,登记号:  2022SR0367495

海表温度参数化方案软件V1.0,登记号:2022SR0367493

三维边界层参数化方案开发软件V1.0,登记号:2022SR0367494

Arakawa-C网格的GRAPES模式四阶精度水平差分软件V1.0,登记号:2022SR0367497

南海台风初始化系统V1.0,登记号:2020SR1773602

基于分析增量更新初始化技术的台风初始化方案软件V1.0,登记号:2020SR1692138

非均匀分层下的GRAPES模式二阶精度垂直差分软件V1.0,登记号:2020SR1692139

气象卫星产品质量检验系统V1.0,登记号:2020SR1600089

大气数值模式地形降水预报系统V1.0,登记号:2020SR070572

大气边界层次网格地形拖曳参数化系统V1.0,登记号:2020SR070571

华南暖区旋转风和辐散风动能收支算法系统V1.0,登记号:2020SR070675

S波段双偏振天气雷达质量控制系统2020SR0703445,登记号:2020SR0703445

数值模式中次网格地形重力波拖曳参数化系统V1.0,登记号:2020SR0417346

基于自动站观测地面温度和位温(nudging)系统V1.0,登记号:2020SR0417341

华南对流尺度集合预报系统V1.0,登记号:2019SR1450341

华南区域模式客观检验系统V1.0,登记号:2019SR1451800

1km分辨率分钟级更新区域数值预报系统(简称:GTRAMS_1KM_RUC),登记号:2018SR360374

中国南海台风大气海洋预报模式系统V2.0,登记号:2017SR470832

广东省风廓线雷达资料面向同化质量控制系统【简称EOF-QC】V1.0,登记号:2017SR470834

中国南海台风模式预报系统1.0,登记号:2014SR030695

华南中尺度模式预报系统V1.0,登记号:2014SR142365

基于雷达反射率的水汽一维加三维变分同化系统V1.0,登记号:2015SR035517

华南区域精细数值天气预报模式系统(简称:华南精细预报模式)V1.0,登记号:2015SR030149

华南沿海风电场精细风场数值预报系统V1.0,登记号:2013SR038246

强冰雹雷达自动识别软件V1.0,登记号:2013SR091530

专利:

一种短时临近数值天气预报系统及方法,专利号,ZL201811168925.1

成果登记:

南海台风数值预报模式关键技术研发及应用,登记号:中气科成登[2022]0241

华南前汛期强降水集合预报扰动方法研究,登记号:粤科成登(1)字[2022]A0529号

对流尺度集合预报技术与业务应用,登记号:粤科成登(1)字[2020]0273号

南海弱台风结构特征与初值方案研究,登记号:粤科成登(1)字[2021]0868号

广州强降水机理及超高分辨率预报预警技术研究,登记号:GK20210161

华南雷暴大风线状对流系统的数值天气预报关键技术研究,登记号:中气科成登[2019]0428

广州市精细数值天气预报模式技术研究,登记号:GK20200121

GRAPES多网格同化系统中非常规风观测的应用技术研究,登记号:中气科成登[2017]0486

中国南海台风模式升级与业务应用,登记号:中气科成登[2017]0482

热带环流系统的数值天气预报关键技术研究,登记号:中气科成登[2015]0527

华南区域精细数值天气预报模式技术开发,登记号:粤科成登(1)字,[2015]0184

华南区域高分辨率0-12小时数值模式预报技术研究与系统集成,登记号:粤科成登(1)字,[2014]0149

 奖:

 

适用于华南区域模式“9-3-1”模式系统的对流参数化方案,广东省气象科技进步奖一等奖(2022)

2022.6.17-6.22龙舟水暴雨,“气象部门预报员联盟2021-2022年度优秀预报案例”优秀案例二等奖

2022.7.1-7.7台风“暹芭”及暴雨,“气象部门预报员联盟2021-2022年度优秀预报案例”表扬案例

南海台风数值预报模式关键技术研发及应用,“十三五”以来气象科技成果评价,“优秀”等级(2022)

GRAPES多网格同化系统中非常规风观测资料的应用技术研究,广东省气象科学创新奖二等奖(2020)

热带区域高分辨率数值天气预报模式,广东省气象科技成果奖特等奖(2019)

区域大气CO2和O3的观测、反演及作用机制,广东省气象科学创新奖一等奖(2019)

台风监测预报系统关键技术,国家科学技术进步奖二等奖(2018)

广东省新一代天气雷达组网关键技术创新及应用,获广东省科学技术奖一等奖(2016)

华南区域精细数值天气预报模式技术开发,获广东省科学技术奖二等奖(2016)

中国南海台风模式预报系统(TRAMS)的研发与应用,气象科学技术进步成果奖二等奖(2016)

超大城市群复杂下垫面边界层过程及精细气象预报关键技术研究,气象科学技术进步成果奖(2016)

热带资料同化技术的业务应用开发,获广东省科学技术奖三等奖(2013)

荣  誉:

获中华全国总工会命名“工人先锋号”(2021)

广东省气象局突出贡献奖(2018,2020)

(二)科研成果业务转化

 

技术成果名称

实施地点

时间

实施效果

华南短临模式(1km)

广东

2020年

2020年11月25日,华南短临模式(1km)顺利通过广东省气象局组织召开的业务准入评审。

南海台风模式业务升级(TRAMS V3.0)

广东

2019年

2019年7月26日,广东省气象局在广州组织召开了南海台风模式(TRAMS V3.0)业务升级评审会,顺利通过评审。

华南区域中尺度模式(GRAPES_GZ 3km)

广东

2018年

2018年11月10日,中国气象局预报与网络司在广州组织召开了“华南区域中尺度模式GRAPES_GZ 3km”业务准入评审,顺利通过。

华南区域中尺度模式预报系统V2.0

广东

2017年

2017年8月17日,广东省气象局组织召开了华南区域中尺度模式预报系统业务升级准入评审会。 评审专家组一致认为华南区域中尺度模式预报系统V2.0达到业务升级准入的要求,同意尽快投入业务运行。

中国南海台风模式V2.0

广东

2016年

2016年6月2日,中国气象局在北京组织召开业务升级评审会。评审专家组一致同意“中国南海台风模式V2.0”业务升级。

华南精细数值预报模式

广东

2013年

通过中国气象局业务准入。在日常预报工作与重大灾害性天气过程 中,发挥重要的预报参考作用。

 

(三) 科技论文

 

2022

[1]Zhang, X. (2022). Impacts of New Implementing Strategies for Surface and Model Physics Perturbations in TREPS on Forecasts of Landfalling Tropical Cyclones. Advances in Atmospheric Sciences, 39(11), 1833–1858. https://doi.org/10.1007/s00376-021-1222-8

[2]Zhang, Y.; Xu, D.; Chen, Z.;Meng, W. Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China. Atmosphere 2022, 13,1324. https://doi.org/10.3390/atmos13081324

[3]Zhang, G., Mao, J., Hua, W., et al. Synergistic effect of the planetary-scale disturbance, typhoon and meso-β-scale convective vortex on the extremely intense rainstorm on 20 July 2021 in Zhengzhou. 2022,  Advances in Atmospheric Sciences, doi: 10.1007/s00376-022-2189-9.

[4]Jeremy Cheuk Hin Leung· Weihong Qian· Peiqun Zhang· Banglin Zhang. Geopotential-based Multivariate MJO Index: extending RMM-like indices to pre-satellite era. Climate Dynamics, 59, 609–631 (2022). https://doi.org/10.1007/s00382-022-06142-2.

[5]Ai, Y., N. Jiang, W. H. Qian, J. C.-H. leung, and Y. Y. Chen, 2022: Strengthened regulation of the onset of the South China Sea summer monsoon by the Northwest Indian Ocean warming in the past decade. Adv. Atmos. Sci., 39(6), 943−952, https://doi.org/10.1007/s00376-021-1364-8.

[6]Ouyang, S., Deng, T., Liu, R., Chen, J., He, G., Leung, J. C.-H., Wang, N., and Liu, S. C.: Impact of a subtropical high and a typhoon on a severe ozone pollution episode in the Pearl River Delta, China, Atmos. Chem. Phys., 22, 10751–10767, https://doi.org/10.5194/acp-22-10751-2022, 2022."

[7]Gan, Q., Wang, L.,Leung, J. C.-H., Weng, J., & Zhang, B. (2022).Recent weakening relationship between the springtime Indo-Pacific warm pool SST zonal gradient and the subsequent summertime western Pacific subtropical high. International Journal of Climatology, 1–22. https://doi.org/10.1002/joc.7890

[8]Li, X., Hu, Z.-Z., Zhao, S., Ding, R., & Zhang, B. (2022). On the asymmetry of the tropical Pacific thermocline fluctuation associated with ENSO recharge and discharge. Geophysical Research Letters, 49, 22GL099242. https://doi.org/10.1029/2022GL099242

[9]Gao, Z., Hu, ZZ., Zheng, F. et al. Single-year and double-year El Niños. Clim Dyn (2022). https://doi.org/10.1007/s00382-022-06425-8

[10]Qian, W., Xu, M. & Ai, Y. Anomaly-based synoptic analysis to identify and predict meteorological conditions of strong ozone events in North China. Air Qual Atmos Health 15, 1699–1711 (2022). https://doi.org/10.1007/s11869-022-01208-w

[11]Qian, W., Leung, J. C.-H., Ren, J., Du, J., Feng, Y., & Zhang, B. (2022). Anomaly based synoptic analysis and model prediction of six dust storms moving from Mongolia to northern China in Spring 2021. Journal of Geophysical Research: Atmospheres, 127, e2021JD036272. https://doi.org/10.1029/2021JD036272

[12]Qian, W.; Du, J. Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere. Meteorology 2022, 1, 127–141. https://doi.org/10.3390/meteorology1020008.

[13]Chen, S., Wang, W., Li, M., Mao, J., Ma, N., Liu, J., et al. (2022). The contribution of local anthropogenic emissions to air pollutants in Lhasa on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 127, e2021JD036202. https://doi.org/10.1029/2021JD036202.

[14]Leung, J.CH., Zhang, B., Gan, Q. et al. Differential expansion speeds of Indo-Pacific warm pool and deep convection favoring pool under greenhouse warming. npj Clim Atmos Sci 5, 97 (2022). https://doi.org/10.1038/s41612-022-00315-w.

[15]Huang H., Leung J.C.H., Chan J.C.L., Liu J., Qian W., Zhang B. (2022) Recent unusual consecutive spring tropical cyclones in the North Atlantic and winter oceanic precursor signals. Journal of Meteorological Research.doi: 10.1007/s13351-023-2111-0

[16]Jiang N., Yu M., Lu B., Leung J.C.H., Zhu C. (2022) The Late 1970s’ Shift in ENSO Persistence Barrier Modulated by the Seasonal Amplitude of ENSO Growth Rate. Journal of Climate. DOI 10.1175/JCLI-D-22-0507.1

[17]Mou J, Zhou L, Wu L, et al. (2022) Evaluation of Biogenic Organic Aerosols in the Amazon Rainforest Using WRF-Chem With MOSAIC. JGR-Atmosphere, 126, e2021JD034913.

[18]Lian S, Zhou L, Murphy D M, et al. (2022) Global distribution of Asian, Middle Eastern, and North African dust simulated by CESM1/CARMA. Atmospheric Chemistry and Physics, 22, 13659-13676.

[19]Wang, N., Huang, X., Xu, J., Wang, T., Tan, Z. M., Ding, A. Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China. Science Advances, 2022, 8(2), eabl6166.

[20]Zheng, B, Gu D, Lin A, Peng D, Li C, and Huang Y. Phase determination of persistent heavy rainfall related to 10–30‑day intraseasonal oscillation over Southeastern China. THEORETICAL AND APPLIED CLIMATOLOGY. 2022,147:1685–1695

[21]ZHANG Yan-xia, CHEN Zi-tong, MENG Wei-guang, et al. Applicability of Temperature Discrete Equation to NMRF Boundary Layer Scheme in GRAPES Model [J]. Journal of Tropical Meteorology, 2022, 28(1): 12-28, https://doi.org/10.46267/j.1006-8775.2022.002.

[22]AI Ze, HE Fei, CHEN Zheng-hong, ZHONG Shui-xin,et al. Simulated Influence of Mountainous Wind Farms Operation on Local Climate [J]. Journal of Tropical Meteorology, 2022, 28(1): 109-120, httsp://doi. org / 10.46267 / j. 1006-8775.2022.009.

[23]XU Dao-sheng, LIANG Jia-hao, LU Ze-bin, et al. Improved Tropical Cyclone Forecasts with IncreasedVertical Resolution in the TRAMS Model [J]. Journal of Tropical Meteorology, 2022, 28(4): 377-387, https://doi. org/10.46267/j.1006-8775.2022.028.

[24]钱维宏,孔海江,赵培娟等.2022.河南“21.7”特大暴雨常规与扰动天气形势分析.地球物理学报,2022,65(11):4208-4224.

[25]伍红雨,吴遥,郭尧.2020—2021年广东秋冬春干旱的成因分析[J].气象,2022,48(06):783-793.

[26]何国文,邓涛,欧阳珊珊,陶丽萍,李振宁,吴晟,张雪,吴兑.广州地区秋季PM_(2.5)和臭氧复合污染的观测研究[J].环境科学学报,2022,42(06):250-259.DOI:10.13671/j.hjkxxb.2021.0462.

[27]艾泽,何飞,陈正洪,钟水新,申彦波.Simulated Influence of Mountainous Wind Farms Operations on Local Climate[J].Journal of Tropical Meteorology,2022,28(01):109-120.

[28]曾琳,伍志方,范绍佳,郑嘉雯,祁秀香,李怀宇.基于风廓线雷达的广州边界层局地回流指数廓线对污染物浓度的影响[J].环境科学学报,2022,42(06):274-284.DOI:10.13671/j.hjkxxb.2021.0519.

[29]王睿,黄燕燕,伍志方,林青,周浪,陈超,吴林.基于双偏振雷达资料对南海弱台风降水微物理结构的分析[J].热带气象学报,2022,38(01):43-57.DOI:10.16032/j.issn.1004-4965.2022.005.

[30]林爱兰,谷德军,李春晖,郑彬,彭冬冬.影响华南汛期持续性强降水年际变化的大气环流和海温异常[J].热带气象学报,2022,38(01):1-10.DOI:10.16032/j.issn.1004-4965.2022.001.

[31]张小娟,张诚忠,齐大鹏,黄钰,朱文达.雷达资料在一次大范围冰雹天气过程中的同化试验分析[J].气象,2022,48(01):61-72.

 

2021

[1]钱维宏等.Anomaly-Based versus Full-Field-Based Weather Analysis and Forecasting.Bulletin of the American Meteorological Society(BAMS),https://doi.org/10.1175/BAMS-D-19-0297.1.

[2]黄燕燕等. An initialisation scheme for tropical cyclones in the South China Sea. Quarterly Journal of the Royal Meteorological Society,2021,147(739): 3096–3110.

[3]徐道生等.Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing.ADVANCES IN ATMOSPHERIC SCIENCES, 2021,38(4):615-626.

[4]钟水新等.The heavy rainfall during the warm season over the Pearl River Delta region: Movements and early signals.Atmospheric Science Letters,2021,22(2):1-7.

[5]钱维宏等.Anomaly-based synoptic analysis and model product application for 2020 summer southern China rainfall events.Atmospheric Research,https://doi.org/10.1016/j.atmosres.2021.105631.

[6]钱维宏等.Opposite anomalous synoptic patterns for potential California large wildfire spread and extinguishing in 2018 cases.Atmospheric Research, 2021,262,105804.

[7]Jian Shi,Kaijun Wu,钱维宏等. Characteristics, trend, and precursors of extreme cold events in northwestern North America Atmospheric Research .Atmospheric Research,2021, 249,105338.

[8]张旭斌.Impacts of different perturbation methods on multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX.Quarterly Journal of the Royal Meteorological Society,2021,147:3899-3921.

[9]张旭斌.Case dependence of multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX.Monthly Weather Review,2021, 149, 1853-1871.

[10]李昊睿等.Implementation of the Incremental Analysis Update Initialization Scheme in the Tropical Regional Atmospheric Modeling System under the Replay Configuration.Journal of Meteorological Research,2021,35,1,198-208.

[11]钟水新等.Budgets of rotational and divergent kinetic energy in the warm-sector torrential rains over South China: a case study.Meteorology and Atmospheric Physics,2021, 133(3), 759-769. doi.org/10.1007/s00703-021-00778-1.

[12]钟水新等.Performance evaluation of the GRAPES model for wind simulation comparison with observed data for South China.JOURNAL OF TROPICAL METEOROLOGY, 2021, 27(1): 1-9, https://doi.org/10.46267/j.1006-8775.2021.001.

[13]梁家豪等. Assessment of FY-2G Atmospheric Motion Vector Data and Assimilating Impacts on Typhoon Forecasts.Earth and Space Science ,2021, 8, e2020EA001628. https://doi.org/10.1029/2020EA001628.

[14]林晓霞等.Improving the Nowcasting of Strong Convection by Assimilating Both Wind and Reflectivity Observations of Phased Array Radar: A Case Study..Journal of Meteorological Research,doi: 10.1007/s13351-022-1034-5.

[15]Jingying Mao,周鲁犀等.Evaluation of Biogenic Organic Aerosols in the Amazon Rainforest Using WRF-Chem With MOSAIC.Journal of Geophysical Research:Atmospheres ,2021:126(23)/E2021jd034913.

[16]钟水新等. A comparison study of predictability of GRAPES model on simulation of two heavy rainfalls in Zhenzhou, Henan province in 2021.JOURNAL OF TROPICAL METEOROLOGY, 2021, 27(4):406-417.

[17]陈子通等.Development of 1km-Scale Operational Model in South China. .JOURNAL OF TROPICAL METEOROLOGY, 2021, 27(4):319-329.

[18]冯业荣等.基于扰动模式的四维变分资料同化系统框架的设计完善和数值试验.气象学报,2021,79(6):902-920.

[19]钱维宏等.辽宁开原龙卷强对流过程的扰动天气环境.地球物理学报,2021,64(05):1531-1541.

[20]陈锦鹏,冯业荣等.基于卷积神经网络的逐时降水预报订正方法研究.气象,2021,47(01):60-70.

[21]徐道生等.高阶精度有限差分方案下的非跳点网格试验:基于浅水波方程.大气科学,2021,45(3): 513−523.

[22]林爱兰等.南亚高压季节内变化与热带季节内振荡之间的关系. 大气科学,2021,45(03):633-650.

[23]刘金卿等.西南涡引发的强对流天气特征. 高原气象,2021,40(03):525-534.

[24]钱维宏等.相对瞬变气候态的气候异常.大气科学学报,2021,44(01):75-88.

[25]张华龙,伍志方等. 基于因子分析的广东省短时强降水预报模型及其业务试验.气象学报,2021,79(01):15-30.

[26]林晓霞等. 华南区域高分辨率数值模式前汛期预报初步评估.热带气象学报,2021,37(04):656-668.

[27]伍红雨等.华南区域性暴雨过程的客观评估及异常机理分析.暴雨灾害,2021,40(03):306-315.

[28]汪海恒,张曙,伍志方等.2019年韶关“5·18”局地特大暴雨极端性成因分析. 热带气象学报,2021,37(01):49-60.

[29]李婷苑,吴乃庚等.华南区域大气成分数值模式GRACEs预报性能评估. 热带气象学报,2021,37(02):207-217.

2020

SCI/EI

[1]王洪等. An improvement of convective precipitation nowcasting through lightning data dynamic nudging in a cloud-resolving scale forecasting system. Atmospheric Research,https://doi.org/10.1016/j.atmosres.2020.104994.

[2]王立稳等.A test of a sun glint correction method for the near-3.9 µm channels of the FengYun-3D Hyperspectral InfraRed Atmospheric Sounder (HIRAS).Remote Sensing Letters,2020,11(10):943-951  https://doi.org/10.1080/2150704X.2020.1795297.

[3]钟水新. Diurnal variation of the duration and environment for heavy rainfall during the warm season in South China.Atmospheric Science Letters,2020,21(6),1–6.

[4]吴乃庚等.Practical and Intrinsic Predictability of a Warm‐Sector Torrential Rainfall Event in the South China Monsoon Region.Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2019JD031313.

[5]张诚忠等.The impact of dropsonde data on a numerical simulation of landfalling typhoon Mangkhut". Meteorological Applications,2020,27(5):1-17  https://doi.org/10.1002/met.1947.

[6]Xufei Liu , 王楠等.Photochemistry of ozone pollution in autumn in Pearl River Estuary,South China.Science of the Total Environment,2021,754,141812.

[7]林爱兰等.Climate shift of the South China Sea summer monsoon onset in 1993/1994 and its physical causes.Climate Dynamics,2020,54,1819–1827.

[8]郑彬等. How can 30-60-day ISO move from the South China Sea to Southern China?. Climate Dynamics,2020,54,3613-3624.

[9]YUNTAO JIAN,林晓霞等.Analysis of Record-High Temperature over Southeast Coastal China in Winter 2018/19:The Combined Effect of Mid- to High-Latitude Circulation Systems and SST Forcing over the North Atlantic and Tropical Western Pacific.JOURNAL OF CLIMATE,2020,33,8813-8831.

[10]钟水新等. The heavy rainfall during the warm season over the Pearl River Delta region: Movements and early signals. Atmospheric Science Letters. 2021,22(2):1-7. https://doi. org/10.1002/asl.1012.

[11]钟水新等.Nocturnal-to-morning rains during the warm season in South China: characteristics and predictability, Atmospheric and Oceanic Science Letters, 2020,13(6): 527-533. doi: 10.1080/16742834.2020.1820844.

[12]钟水新等.A STUDY ON THE PREDICT ABILITY OF GRAPES MODEL OVER SOUTH CHINA:COMPARISONS BY TWO INITIALIZATION CONDITIONS BETWEEN ECMWF AND NCEP. JOURNAL OF TROPICAL METEOROLOGY,2020,26(1),27-34.

[13]吴亚丽等.Synoptic Characteristics RelatedtoWarm-Sector Torrential Rainfall Events in South China During the Annually First Rainy Season.Journal of Tropical Meteorology,2020,26(3):253-260.

[14]钟水新等.A Review on GRAPES-TMM Operational Model System at Guangzhou Regional Meteorological Center.Journal of Tropical Meteorology,2020,26(04):495-504.

一级核心期刊

[16]徐道生等.非均匀分层下的二阶精度垂直差分方案及其在GRAPES 模式中的应用.大气科学,2020,44(5):975−983. 

[17]徐道生等.TRAMS_RUC_1 km 模式初始场和侧边界方案的改进研究 .大气科学,2020,44(3):625−638.

[18]伍红雨等.基于区域自动气象站的广东极端强降水特征分析.气象,2020,46(06):801-812.

[19]闵锦忠,吴乃庚近二十年来暴雨和强对流可预报性研究进展.大气科学,2020,44(05):1039-1056.

[20]冯业荣等.GRAPES区域扰动预报模式动力框架设计及检验.气象学报,2020,78(5):805-815.

[21]徐道生等.南海台风模式TRAMS 3.0的技术更新和评估结果.气象,2020,46(11):1474-1484.

二级核心期刊

[22]陈子通等.热带高分辨率模式(TRAMS-V3.0)技术方案及其系统预报性能.热带气象学报,2020,36(04):444-454.

[23]张艳霞等.华南锋面和季风降水环流特征及加热结构对比分析.热带气象学报,2020,36(01):1-12.

[24]林爱兰等.体现大尺度特征的区域持续性强降水过程定义指标.热带气象学报,2020,36(03):289-298.

[25]伍红雨等.广东气候年景的客观定量化评估.大气科学学报,2020,43(03):516-524.

[26]吴乃庚等.华南前汛期暖区暴雨研究新进展.气象科学,2020,40(05):605-616.

[27]钱维宏等.一次广东典型龙舟水暴雨过程的扰动形势分析.热带气象学报,2020,36(04):433-443.

[28]伍红雨等.1961—2018年广东高温的气候变率及其与大气环流和海温异常的关系.热带气象学报,2020,36(04):455-463.

[29]吴凯昕等. 非均匀网格下的高阶精度中央差分格式:理论推导和理想试验.热带气象学报,2020,36(3):389-400.

2019

SCI/EI

[1]Banglin Zhang et al.Changes of tropical cyclone activity in a warming world are sensitive to sea surface temperature environment.Environmental Research Letters,https://doi.org/10.1088/1748-9326/ab5ada.

[2]张旭斌.Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX.Quarterly Journal of the Royal Meteorological Society,2018,144(717):2842-2862.

[3]张旭斌.Multiscale Characteristics of Different-Source Perturbations and their Interactions for Convection-Permitting Ensemble Forecasting during SCMREX.Monthly Weather Review,2019, 147, 291-310.

[4]张旭斌.Assimilation of Data Derived from Optimal-Member Products of TREPS for Convection-Permitting TC Forecasting over Southern China.Atmosphere,2019, 10, 84.

[5]王洪等.An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer.Atmospheric Research,2019,226:171-180.

[6]Zhong SX , et al..Characteristics and synoptic environment of torrential rain in the warm sector over South China: a composite study.Meteorology Atmospheric Physics,2019,131(5),1191-1203.

[7]Yang S, Tang XB, Zhong SX, et al.Convective bursts episode of the rapidly intensified typhoon Mujigae.ADVANCES ATMOSPHERIC SCIENCES,http://doi.org/10.1007/s00376-019-8142-x.

[8]Naigeng Wu,et al.Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season.Atmospheric Research, https://doi.org/10.1016/j.atmosres.2019.104693.

[9]Xiaoran Zhuang, Naigeng Wu,et al.Understanding the Predictability within Convection-Allowing Ensemble Forecasts in East China:Meteorological Sensitivity, Forecast Error Growth and Associated Precipitation Uncertainties Across Spatial Scales.Atmosphere,2020, 11, 234; doi:10.3390/atmos11030234.

[10]YaliWu,et al.Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR.Atmospheric Research,https://doi.org/10.1016/j.atmosres.2020.104912.

[11]Zhujie Li, Haobo Tan,et al.Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China.Atmospheric Chemistry and Physics, 19, 11669–11685, 2019 https://doi.org/10.5194/acp-19-11669-2019.

[12]Li C,et al. Lin A.Asymmetric effects of atmospheric circulation on the South China Sea summer monsoon onset.Dynamics of Atmospheres and Oceans,87, doi: 10.1016/j.dynatmoce.2019.101099.

[13]Zheng B,et al.The 30–60-day northward-propagating intraseasonal oscillation over South China Sea during pre-monsoon period in a coupled model.Internationa Journal of Chimatology,39, 4811–4824.

[14]Zheng B, et al.Mechanisms of Northward-Propagating Intraseasonal Oscillation over the South China Sea during the Pre-Monsoon Period.JOURNAL OF CLIMATE VOLUME,32(11): 3297-3311.

[15]于鑫,郑腾飞等.CAUSAL ANALYSIS AND NUMERICAL MODELING OF THE INSHORE INTENSIFICATION OF SUPER TYPHOON “HATO”.JOURNAL OF TROPICAL METEOROLOGY,2019,25(03):293-303.

[16]Zhong SX,et al.EVALUATION OF THE PARAMETERIZATION SCHEMES AND NUDGING TECHNIQUES IN GRAPES FOR WARM SECTOR TORRENTIAL RAINS USING SURFACE OBSERVATIONS.JOURNAL OF TROPICAL METEOROLOGY,2019,25(03):353-364.

[17]Zhong SX,et al.Capabilities and limitations of grapes simulations of extreme precipitation in the warm sector over a complex orography.JOURNAL OF TROPICAL METEOROLOGY,2019,25(02):180-191.

[18]董少柔,张团团,杨崧,冯业荣.Dynamical prediction of west China autumn rainfall by the NCEP Climate Forecast system.JOURNAL OF TROPICAL METEOROLOGY,2019,25(01):114-128.

一级核心期刊

[19]伍红雨等.广东区域性暴雨过程的定量化评估及气候特征.应用气象学报,2019,30(02):233-244.

[20]蒙伟光等.季风槽环境中暴雨中尺度对流系统的分析与数值预报试验.气象学报,2019, 77(6):980-998.

[21]徐道生等.一种基于分析增量更新技术的台风初始化方.气象学报,2019,77(06):1053-1061.

[22]张兰,徐道生(通讯作者)等.雷达反演资料的Nudging同化对华南暴雨过程短临预报的影响.高原气象,2019,38(06):1208-1220.

二级核心期刊

[23]李霁杭等.基于2017年5月7日广州特大暴雨分析影响半径对集合卡尔曼滤波方法同化效果的影响.热带气象学报,2019,35(01):73-88.

[24]张诚忠等.基于贝叶斯方案的雷达反射率反演水汽及其同化试验.热带气象学报,2019,35(02):145-153.

[25]李霁杭等.基于观测路径的集合预报样本优选对热带气旋的模拟研究.热带气象学报,2019,35(02):197-209.

[26]梁巧倩,蒙伟光等.广东前汛期锋面强降水和后汛期季风强降水特征对比分析.热带气象学报,2019,35(01):51-62.

[27]郑彬,黄燕燕等.局地水汽异常引起的非绝热加热对2016/2017年中国南方暖冬的影响.热带气象学报,2019,35(03):289-295.

[28]李彩玲,吴乃庚等.台风“艾云尼”(2018)外围两次近距离龙卷的环境条件和雷达特征.热带气象学报,2019,35(04):446-457.

[29]林书恒,管玉平,张邦林.CMIP5模式对近30年沃克环流强度变化模拟的不足及成因分析.热带海洋学报,2019,38(05):52-67.

[30]李海燕,孙家仁,谌志刚,梁之彦,钟水新等.两类El Ni■o事件对华南前汛期降水异常的影响.热带气象学报,2019,35(04):491-503.

[31]张妤晴,林爱兰等.南海周边越赤道气流的多时间尺度变化特征及其与环流和降水的联系.热带气象学报,2019,35(04):504-516.

[32]李春晖等.青藏高原热力作用对南海及周边区域夏季气候的影响研究进展.热带气象学报,2019,35(02):268-280.

[33]汤静,王春林,谭浩波等.利用PCA-kNN方法改进广州市空气质量模式PM_(2.5)预报.热带气象学报,2019,35(01):125-134.

[34]张诚忠等.资料同化对2017年登陆广东沿海台风的短期降水与路径预报影响.热带气象学报,2019,35(05):577-586.

[35]朱文达,陈子通(通讯作者)等.高分辨地形对华南区域GRAPES模式地面要素预报影响的研究.热带气象学报,2019,35(06):801-81.

[36]伍红雨等.1961—2018年粤港澳大湾区气候变化分析.暴雨灾害,2019,38(04):303-310.

[37]蔡景就,伍志方等.“18•8”广东季风低压持续性特大暴雨成因分析.暴雨灾害,2019,38(06):576-586.

[38]郭姿佑,伍志方等.“18•8”广东季风低压持续性特大暴雨水汽输送特征暴雨灾害.暴雨灾害,2019,38(06):587-596.

[39]赵杨洁,李江南,董雪晗,冯业荣.模式分辨率对台风“天鸽”(2017)模拟效果的影响.热带气象学报,2019,35(05):629-643.

[40]林书恒,管玉平,张邦林.CMIP5模式对近30年沃克环流强度变化模拟的不足及成因分析.热带海洋学报,2019,38(05):52-67.

[41]王德立,孔凡铀,王洪等.双偏振雷达资料同化对一次台风降雨模拟的影响.气象科技进展,2019,9(03):153-159.

2018

SCI/EI

[1]X Zhang. A GRAPES-based mesoscale ensemble prediction system for tropical cyclone forecasting: configuration and performance. Quarterly Journal of the Royal Meteorological Society,2018,144, 478–498.

[2]Shui-xin Zhong,et al.Characteristics and synoptic environment of torrential rain in the warm sector over South China:a composite study.Meteorology and Atmospheric Physic,2018,http://doi.org/10.1007/s00703-018-0629-y.

[3]Shuixin ZHONG, et al.Evaluating and Improving Wind Forecasts over South China: The Role of Orographic Parameterization in the GRAPES Model.ADVANCES IN ATMOSPHERIC SCIENCES,2018,35(6), 713-722.

[4]Jihang Li,et al.Sample optimization of Ensemble Forecast to simulate a tropical cyclone using the observed track .Atmosphere-ocean,2018, 56:3,162-177, DOI: 10.1080/07055900.2018.1500881.

[5]Yudong Gao, et al.Application of the multigrid 3D variation method to a combination of aircraft observations and bogus data for Typhoon Nida (2016).Meteorological Applications,DOI: 10.1002/met.1764.

[6]B. Mai,  et al.Column-integrated aerosol optical properties of coarse- and fine-mode particles over the Pearl River Delta region in China.Science of the Total Environment,622-623(2018)481-492 https://doi.org/10.1016/j.scitotenv.2017.11.348.

[7]LI Ji-hang,et al.The effect of sample optimization on the ensemble Kalman filter in forecasting Typhoon Rammasun (2014) .JOURNAL OF TROPICAL METEOROLOGY,2018, 24(4): 433-447.

[8]Deqiang Liu, Xubin Zhang, Yerong Feng(通讯作者),et al.Analysis of Uncertainties in Forecasts of Typhoon Soudelor (2015) from Ensemble Prediction Models.SOLA,2018,14,203−209,doi:10.2151/sola.2018-036 .

[9]郑腾飞,于鑫等.Observational analysis of a torrential rainstorm in the warm sector of South China coastal areas. Journal of Tropical Meteorology, 24(4): 485-497..JOURNAL OF TROPICAL METEOROLOGY,2018,24(4): 485-497.

[10]P.W. Chan,N.G. Wu,C.Z. Zhang, et al.The first complete dropsonde observation of a tropical cyclone over the South China Sea by the Hong Kong Observatory.Weather,2018,73(7):227-234.

[11]Li Liu,Haobo Tan ,et al.Influence of aerosol hygroscopicity and mixing state on aerosol optical properties in the Pearl River Delta region, China.Science of the Total Environment,627 (2018) 1560–1571  https://doi.org/10.1016/j.scitotenv.2018.01.199.

[12]Luxi Zhou , Donna B. et al..The impact of air pollutant deposition on solar energy system efficiency: An approach to estimate PV soiling effects with the Community Multiscale Air Quality (CMAQ) model.Science of the Total Environment,https://doi.org/10.1016/j.scitotenv.2018.09.194.

一级核心期刊

[13]伍红雨等.不同类型和强度的厄尔尼诺事件对次年华南前汛期降水的可能影响.大气科学,2018,42(5):1081-1095.

[14]吴亚丽等.一次华南暖区暴雨过程可预报性的初值影响研究.气象学报,2018,76(1):323-342.

[15]王洪等.一次华南超级单体风暴的S波段偏振雷达观测分析.气象学报,2018,76(1):92-103.

[16]李春晖等.广东省降水的多尺度时空投影预测方法.应用气象学报,2018,29(2):271-231.

[17]王洪等.面向资料同化的犛波段双偏振雷达质量控制.应用气象学报,2018,29(5):546-558.

[18]宿志国,吕伟涛,陈绿文等.建筑物高度对地闪回击电磁场影响的模拟.应用气象学报,2018,29(4):487-495.

[19]徐静馨,郑有飞,麦博儒等.麦田O3干沉降过程及不同沉降通道分配的模拟.中国环境科学,2018,38(02):455-470.

[20]邹宇等.广州地区一次典型光化学污染过程的监测.环境化学,2018,37(02):353-362.

[21]伍志方等.2017年广州“5•7”暖区特大暴雨的中尺度系统和可预报性.气象,2018,44(04):485-499.

二级核心期刊

[22]伍红雨,李春梅,刘蔚琴.1961-2014年广东汛期小时强降水的日变化特征.中山大学学报(自然科学版),2018,57(05):10-18.

[23]李霁杭等.ECMWF资料和Bogus资料的2015年热带气旋结构的对比分析.热带气象学报,2018,34(01):48-58.

[24]李慧芹,李江南,于艳,杨锦超,宋云涛,冯业荣.一次海南秋季台风暴雨的特征和成因分析.热带气象学报,2018,34(01):133-144.

[25]谷德军等.影响南海夏季风爆发年际变化的关键海区及机制初探.热带气象学报,2018,34(01):1-11.

[26]黄燕燕等. 采用预报涡旋的初始化方案对2015“莲花”、“灿鸿”的试验研究.热带气象学报,2018,34(5):598-609.

2017

SCI/EI

[1]Shuixin Zhong,et al.The Impacts of Atmospheric Moisture Transportation on Warm Sector Torrential Rains over South China.Atmosphere,http://dx.doi.org/10.3390/atmos8070116.

[2] Yali Luo, Renhe Zhang, Qilin Wan,et al. THE SOUTHERN CHINA MONSOON RAINFALL EXPERIMENT (SCMREX).AMERICAN METEOROLOGICAL SOCIETY, MAY 2017, http://dx.doi.org/10.1175/

BAMS-D-15-00235.1.

[3]MENG Weiguang,et al.SENSITIVITY OF MESOSCALE CONVECTIVE SYSTEMS AND ASSOCIATED HEAVY RAINFALL TO SOIL MOISTURE OVER SOUTH CHINA. JOURNAL OF TROPICAL METEOROLOGY,23(1),91-102.

[4]Tan Haobo,et al. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta. Science of the Total Environment, 2017,1822-1830(online 2016).

[5]Mingfu Cai,et al. Comparison of Aerosol Hygroscopcity, Volatility, and Chemical Composition between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa. Aerosol and Air Quality Research,x: 1–15, xxxx doi: 10.4209/aaqr.2017.01.0020.

[6]Yi Ming Qin,et al. Impacts of traffic emissions on atmospheric particulate nitrate and

organics at a downwind site on the periphery of Guangzhou, China. Atmoshpheric Chemistry Physics, 17, 10245–10258, 2017 https://doi.org/10.5194/acp-17-10245-2017.

[7]Jiangnan Li,et al. Effects of latent heat in various cloudmicrophysics processes on autumn rainstorms with different intensities on Hainan Island, China. Atmospheric Research, 189 (2017)47-60.

[8]Jiang-Nan LI,et al. Simulation of the evolution of the latent heat processes in a mesoscale convective system accompanied by heavy rainfall over the Guangzhou region of South China. Atmospheric and Oceanic Science Letters, ISSN: 1674-2834 (Print) 2376-6123 (Online) Journal homepage: http://www.tandfonline.com/loi/taos20.

[9]Jiangnan Li,et al. Assimilation of Doppler Weather Radar Radial Velocity and Reflectivity Observations in the WRF-3DVAR System for Simulation of a Heavy Rainfall Event over the Pearl River Delta. Atmoshpheric Chemistry Physics.17,10245-10258,2017 .

一级核心期刊

[1]吴乃庚,等.日极端气温的主客观预报能力评估及多模式集成网格释用. 气象,2017,43(5):581-590.

[2]李春晖,等.华南春季降水及其季节内振荡强度的年代际变化特征. 高原气象,2017,36(2):491-500.

[3]陈懿昂,等.珠江三角洲SO_2初始场同化试验研究. 中国环境科学,2017,37(5):1610-1619.

[4]劳钊明,等.基于ENVI-met的中山市街区室外热环境数值模拟.中国环境科学,2017,37(9):3523

-3531.

[5]麦健华,等.中山市一次灰霾天气过程污染物来源数值模拟分析.中国环境科学,2017,37(9):3258

-3267.

[6]邹宇,等.广州番禺大气成分站复合污染过程VOCs对O_3与SOA的生成潜势. 环境科,2017,38(6)

:2246-2255.

[7]伍红雨,等.1961-2014年广东小时强降水的变化特征. 气象,2017,43(3):305-314.

二级核心期刊

[1]林晓霞,等.近海加强台风“威马逊”(1409)环境条件及结构特征的数值研究.中山大学学报(自然科学报),2017,56(5):28-38.

[2]林晓霞,等.华南一次暴雨过程热力和动力特征的诊断分析.热带气象学报,2017,33(6):622-630.

[3]张诚忠,等.雷达反演潜热在华南区域数值模式汛期短时临近降水预报应用试验.热带气象学报,2017,33(5):577-587.

[4]郑腾飞,等.近50年广东省分级降水的时空分布特征及其变化趋势的研究.热带气象学报,2017,33(2):212-220.

[5]黄燕燕,等. 2011年“洛克”和“桑卡”双台风预报效果的初值试验研究. 热带气象学报,2017,33(1):30-42.

[6]朱磊,等. 雷达径向风资料EnKF同化应用对Vicente(2012)登陆台风强度变化过程预报的影响试验研究. 热带气象学报,2017,33(3):345-356.

[7]于鑫,等.一次华南海岸带暖区暴雨过程的观测分析.热带气象学报,2017,33(1):134-144.

[8]李春晖,等. 影响华南后汛期季风持续性暴雨和热带气旋持续性暴雨的大尺度环流背景分析. 热带气象学报,2017,33(1):11-20.

[9]刘潇,等. 2012年南海夏季风活跃期与非活跃期广东电白地区海陆大气边界层特征分析.热带气象学报,2017,33(1):93-103.

[10]李春晖,等. 南海-西太平洋春季对流10~30天振荡强度对南海夏季风爆发早晚的影响. 热带气象学报,2017,33(1):43-52.

2016

SCI/EI

[1] Meng, W..A diagnostic study on heavy rainfall induced by Typhoon Utor (2013) in South China: 1. Rainfall asymmetry at landfall. J. Geophys. Res. Atmos.,2016, 121(12):12781-12802

[2] Meng, W.. A diagnostic study on heavy rainfall induced by Typhoon Utor (2013) in South China: 2. Postlandfall rainfall. J. Geophys. Res. Atmos. ,2016, 121(12):12803-12819.

[3] Zhang, X. B.. Impact of Assimilating Wind Profiling Radar Observations on Convection-Permitting Quantitative Precipitation Forecasts during SCMREX. Wea. Forecasting ,2016,31:1271-1292.

[4] Haobo Tan. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta. China    Atmospheric Environment,http://dx.doi.org/10.1016/j.atmosenv.

2016.02.003 2016,131:196-208.

[5] Hua Deng,.Impact of relative humidity on visibility degradation during a haze event:A case study. Science of the Total Environment,Http://dx.doi.org/10.1016/j.scitotenv.

2016.06.190 2016,569–570:1149–1158.

[6] Rongxin. Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons in Pearl River Delta region.  China  Atmospheric Research,http://dx.doi.org

/10.1016/j.atmosres.2015.09.031 2016,169:160-170.

[7] He C,. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor Appl Climatol    2016,doi:10.1007/s00704-016-2001-9.

[8] He C,. The fraction of East Asian interannual climate variability explained by SST in different seasons: an estimation based on 12 CMIP5 models.  Atmos Sci Lett 2016,doi:10.1002/asl.722.

[9] WANG Nan,. Assessment of regional air quality resulting from eission control in the Pearl River Delta region.  southern China  Science of the Total Environment,

http://sci-hub.cc/10.1016/j.scitotenv.2016.09.013 2016,573:1554-1565.

[10] Mai Jianhua,. A Modeling Study of Impact of Emission Control Strategies on PM2.5 Reductions in Zhongshan, China, Using WRF-CMAQ   Advances in Meteorology,

http://dx.doi.org/10.1155/2016/5836070 2016,5836070,11.

[11] Wang Gang,. Research on aerosol profiles and parameterization scheme in Southeast China. Atmospheric Environment 2016,140,605-613.

[12] Deng Tao,. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.  Science of the Total Environment 2016,568,147-154.

[13] 吴亚丽. On Use of LHN Method to Assimilate The Intensified Surface Precipitations for GRAPES_Meso Model Initialization. JOURNAL OF TROPICAL METEOROLOGY, 2016, 22(4):544-558.

[14] 谭浩波. MEASUREMENTS OF PARTICLE NUMBER SIZE DISTRIBUTIONS AND NEW PARTICLE FORMATION EVENTS DURING WINTER IN THE PEARL RIVER DELTA REGION.  CHINA JOURNAL OF TROPICAL METEOROLOGY, 2016, 22(2):191-199.

[15] 黄燕燕.INVESTIGATION ON EFFECTS OF INITIAL SCHEMES FOR BINARY TYPHOONS ROKE AND SONCA IN 2011. JOURNAL OF TROPICAL METEOROLOGY,2016, 22(S1):1-14.

[16] 钟水新.Improved Forecasting of Cold Air Outbreaks over Southern China through Orographic Gravity Wave Drag Parameterization. JOURNAL OF TROPICAL METEOROLOGY   2016,22(4):122-133.

[17] 李昊睿.A PRELIMINARY STUDY ON THE QUALITY CONTROL METHOD FOR GUANGDONG GPS/PWV DATA AND ITS EFFECTS ON PRECIPITATION FORECASTS IN ITS ANNUALLY FIRST RAINING SEASON. Journal of Tropical Meteorology,2016,22(4),66-74.

[18] 张诚忠.application experiment of assimilating radar-retrieved water vapor in short-range forecast of rainfall in the annually first rainy over South Chinaseason. Journal of Tropical Meteorology,2016, 22(4):578-588.

[19] 黄辉军.A case study of numerical simulation of sea fog on the southern China coast Journal of Tropical Meteorology,2016, 22(4):495-507.

[20] 黄辉军.Improvement of regional prediction of sea fog on Guangdong coastland using the factor of temperature difference in the near-surface layer. Journal of Tropical Meteorology, 2016, 22(1): 66-73.

[21] 安成.An analysis of distribution and mesoscale structure of precipitation about landfall tropical cyclone KOPPU (0915).   Journal of Tropical Meteorology,    2016, 22(4): 445-454.

[22] 袁金南.Temperature retrieved from AMSU-A and its analysis for warm-core of tropical depression in the South China Sea. Journal of Tropical Meteorology,2016,22(4): 559-567.

[23] 刘显通.Spatio-Temporal Characteristics of NO 2  In PRD Urban Group and the Anthropogenic Influences Analysis Based on OMI Remote Sensing Data.   Journal of Tropical Meteorology,2016, 22(4): 568-577.

[24] 郑腾飞.Observational Study on the Pre-Tropical Cyclone Squall Line of 8 August 2007 Over the Coast of South China. Journal of Tropical Meteorology, 2016,22(4): 508-521.

[25] 林爱兰.赤道MJO活动对南海夏季风爆发的影响. 地球物理学报,  2016, 59(1):28-44

 

一级核心期刊

[26] 王洪.双线偏振雷达资料在数值模式中的应用:模拟器的构建.气象学报,2016,74(2):229-243.

[27] 麦建华.中山市旱季霾特征及数值模拟分析. 环境科学学报,2016,36(6):2170-2179.

[28] 李颖敏.中山市2000~2014年霾天气特征及气象影响因子,中国环境科学,2016, 36(6):

1638-1644.

[29] 李春晖.热带西北太平洋10-30d振荡对南海夏季风影响.应用气象学报,2016,27(3):293-302

[30] 纪忠萍.东亚夏季风强度的多尺度统计预测模型. 大气科学, 2016,40(2): 227-242.

 

二级核心期刊

[31] 姚帅.利用GRAPES-UCM 模式对广州典型污染天气过程的数值模拟研究. 南京大学学报(自然科学), 2016, 52(6):1016-1028.

[32] 陈子通.模式动力过程与物理过程耦合及其对台风预报的影响研究. 热带气象学报,2016,32(1):1-8.

[33] 徐道生.不同水汽分析场对一次华南前汛期暴雨预报的影响分析. 热带气象学报,2016,32(2):155-162.

[34] 徐道生.华南区域高分辨率模式中不同雷达回波反演技术方案的比较试验. 热带气象学报, 2016,32(1):9-18.

[35] 张艳霞.城市冠层模式在GRAPES模式中的应用. 热带气象学报, 2016, 32(3):311-321.

[36] 王洪.FY2E辐射资料的直接同化试验研究. 热带气象学报, 2016, 32(3):334-345.

[37] 郑彬.南海夏季风活动指标的定义及应用    . 热带气象学报, 2016, 32(4):433-443.

[38] 伍红雨.广东记录霾日和统计霾日的气候特征及比较. 热带气象学报,2016,32(4):486-493.

[39] 赵中阔.台风环境中海气动量与焓交换观测研究及应用进展. 热带气象学报,2016,32(6):918-924.

[40] 刘春霞.南海海洋气象数值预报系统(Grapes-MAMS)及其业务应用. 热带气象学报,2016,32(6):890-899.

[41] 邓雪娇. 华南区域大气成分业务数值预报GRACEs模式系统. 热带气象学报, 2016,32(6):900-907.

[42] 李春晖. 南海准双周和20~60天振荡的年代际变化特征. 热带气象学报2016,32(5):577-587.

[43] 林爱兰.大气季节内振荡在华南降水预报中的应用. 热带气象学报  2016,32(6):878-889.

[44] 李春晖.春季和夏季爆发型ENSO 事件对夏季中国降水的影响.  气候与环境研究, 2016,21(3)

:258-268.

 

2015

SCI/EI

[1]ZhongShuixin,ChenZitong.Improved wind circulations and precipitation forecasts over southwest china using a modified orographic parameterization scheme[J].J.Meteor. Res.,2015,29(1):132-143.

[2]Yang Zhaoli.NUMERICAL SIMULATION OF ATMOSPHERIC POLLUTANTS DURING THE ONSET STAGE OF SOUTH CHINA SEA SUMMER MONSOON IN 2011. .JOURNAL OF TROPICAL METEOROLOGY,2015,21(S1):57-65.

[3]XuDaosheng.THE LIMITATION FO CLOUD-MASE MASS FLUX IN CUMULUS PARAMETERIZATION AND ITS APPLICATION IN A HIGH-RESOLUTION MODEL.JOURNAL OF TROPICAL METEOROLOGY,2015,21(S1):11-22.

[4]Zhang Xu-bin, Wan Qi-lin, Xue Ji-shan, et al. The Impact of Different Physical Processes and Their Parameterizations on forecast of a Heavy Rainfall in South China in Pre-Flooding Season. Journal of Tropical Meteorology, 2015,21(2):194-210.

[5]Kang Sun,Dan Li,Lei Tao,et al.Quantifying the Influence of Random Errors

in Turbulence Measurements on Scalar Similarityin the Atmospheric Surface Layer. Boundary-Layer Meteorol,DOI 10.1007/s10546-015-0047-3,Published on line:04 June 2015

[6] Li Haorui, Ding Weiyu, Chen Zitong, Gao Yudong. A STUDY ON THE APPLICATION OF FY-2E CLOUD DRIFT WIND HEIGHT REASSIGNMENT IN NUMERICAL FORECAST OF TYPHOON CHANTHU (1003) TRACK. JOURNAL OF TROPICAL METEOROLOGY,2015,21(1): 34-42.

 

一级核心期刊

[1]王洪,王东海,万齐林. 多普勒雷达资料同化在“7.21”北京特大暴雨个例中的应用.气象学报,2015,73(4):679-696.

[2]张旭斌,万齐林,薛纪善,丁伟钰,李昊睿. 风廓线雷达资料质量控制及其同化应用.气象学报,2015,73(1):159-176.

[3]伍红雨,杨崧,蒋兴文. 华南前汛期开始日期异常与大气环流和海温变化的关系. 气象学报,2015,73(2):319-330.

[4]钟水新,陈子通.天气与气候模式中次网格重力波拖曳参数化的研究.高原气象,2015,34(4):1177-1185.

[5]高郁东,万齐林,薛纪善,等.同化雷达估算降水率对暴雨预报的影响[J]. 应用气象学报,2015,26(1):45-56.

 

二级核心期刊

[1]张艳霞,蒙伟光,戴光丰,等. 台风“凡亚比”登陆过程中暴雨MCSs演变及形成机理.热带气象学报,2015,31(4):433-443.

[2]李菲,邓雪娇,谭浩波,等.微量振荡天平法与激光散射单粒子法在气溶胶观测中的对比试验研究.热带气象学报,2015,31(4):497-504.

[3]林爱兰,谷德军,郑彬,李春晖. 6月广东持续性暴雨过程概念模型的建立.热带气象学报,2015,31(3):289-299.

[4]郑彬,施春华.1979-2011年热带对流层顶高度线性趋势变化的因子贡献及其年际变率成因探讨.热带气象学报,2015,31(3):300-309.

[5]张旭斌,薛纪善,万齐林,丁伟钰,李昊睿. 时间依赖的多尺度背景误差协方差研究Ⅱ——应用.热带气象学报,2015,31(2):161-172.

[6]徐道生,陈子通,谢东东,戴光丰,钟水新. 地形效应引起的局地扰动对华南降水预报的影响研究. 热带气象学报,2015,31(2):173-181.

[7]刘显通,郑腾飞,万齐林,等. OMI遥感珠三角城市群NO_2的时空分布特征及人类活动影响分析. 热带气象学报,2015,31(2):193-201.

[8]蒋德海,宋耀明,陈子通. GRAPES模式在华南沿海风电场精细风场预报中的应用[J]. 资源科学,2015,37(2):325-332.

[9]张月维,单海滨. Suomi NPP卫星直接广播数据接收和预处理[J].气象科技,2015,43(1):53-58.

[10]邹宇,邓雪娇,李菲,等. 广州大气中异戊二烯浓度变化特征、化学活性和来源分析[J]. 环境科学学报,2015,35(3):647-655.

[11]李菲,谭浩波,邓雪娇,等. 2006~2010年珠三角地区SO_2特征分析[J]. 环境科学,2015,36(5):1530-1537.

[12]张月维,何全军,黄江. 珠江三角洲地区FY-3卫星MERSI影像的大气校正方法研究[J]. 气象与环境学报,2015,31(2):15-20.

[13]张艳霞.LAPS云分析中卫星资料的应用及对GRAPES模式短时预报的影响.热带气象学报,2015,31(5):599-607.

 

 

2014

  SCI/EI

1. CHEN Zitong,ZHANG Chengzhong,HUANG Yanyan, et al., 2014: Track of Super Typhoon Haiyan Predicted by a Typhoon Model for the South China Sea. J. Meteor. Res., 28(4): 510-523

2. Jinnan Yuan. Potential vorticity diagnosis of tropical cyclone Usagi (2001) genesis induced by a mid-level vortex over the South China Sea. Meteorology and Atmospheric Physics,2014,125:75-87.

3. Huang Hui-jun,Yuan Jinnan,Li Chunhui,Mao Weikang.Comparison of the structural characteristics of developed versus undeveloped mid-level vortexes. Journal of Tropical Meteorology,2014,20(1):57-65.

4. ZHANG Yan-xia, CHEN Zi-tong, MENG Wei-guang et al.      the influence of cloud parameterization adjustment using reflectivity of doppler on nowcasting with grapes. JOURNAL OF TROPICAL METEOROLOGY,2014,20(2):181-192.

5. Liu Xian Tong,Liu Qi,Fu Yun Fei et al.Daytime precipitation identification scheme based on multiple cloud parameters retrieved from visible and infrared measurements.SCIENCE CHINA Earth Sciences,2014,57(9):2112-2124.       SCI

6. Li chunhui, Li ailan,Gu dejun et al.The Downscaling Forecast of  seasonal Precipitation in Guangdong based on Climate Forecast Systems Products.Journal of Tropical Meteorology,2014, 20(2):143-153.

6. Zhong Shuixin,Chen Zitong. Improved wind circulations and precipitation forecasts over southwest china using a modified orographic parameterization scheme. Journal of Meteorological Research,DOI:10.1007/s13351-014-4034-2

7. Deng X J*,Li F, Li Y H, et al. Vertical distribution characteristics of PM in the surface layer of Guangzhou. Particuology,DOI: 10.1016/j.partic.2014.02.009,  http://www.sciencedirect.com/science/article/pii/S1674200114000686,Available online 24 May 2014.

一级核心期刊

1. 陈子通,张诚忠,黄燕燕,冯业荣,钟水新,戴光丰,徐道生,杨兆礼. 2014. 南海台风模式对“海燕”移动路径的预报[J]. 气象学报, 72(4):678-689

2. 钟水新,陈子通,戴光丰等.地形重力波拖曳参数化对热带气旋强度和路径预报影响的研究.大气科学,38(2):273-284.

3. 徐道生陈子通钟水新,等. 对流参数化与微物理过程的耦合及其对台风预报的影响研究.气象学报,2014,72(2):337-349

4. 麦博儒,邓雪娇,安兴琴,等. 基于碳源汇模式系统Carbon Tracker 的广东省近地层典型CO2过程模拟研究.环境科学学报,2014,34(7):1833-1844

5. 谭浩波,邓雪娇,麦博儒等.基于卫星遥感资料监测地面细颗粒物的敏感性分析.中国环境科学,2014,34(7):1649-1659.       一级核心(EI收录)  

6. 程正泉,林良勋,刘燕等.粤东“浣熊”台风大暴雨的散度风动能分析.高原气象,2014,33(2):557-566.

二级核心期刊

1. 李昊睿丁伟钰薛纪善, 等.广东省GPS/PWV资料的质量控制及其对前汛期降水预报影响的初步研究. 热带气象学报,2014,30(3):454-462

2. 徐道生陈子通钟水新,等. 积云参数化方案中云底质量通量的限制及其在高分辨率模式中的应用. 热带气象学报,2014,30(3):401-412

3. 杨兆礼,刘三梅,万齐林,等. 基于雷达径向风的广东4月17日强对流过程螺旋度特征分析.热带气象学报,2014,30(4):763-768

4. 杨兆礼,陈子通,张诚忠,等.2012年中国南海台风模式预报情况.热带气象学报,2014,30(2):392-400

5. 张旭斌,薛纪善,万齐林,等.时间依赖的多尺度背景误差协方差研究 Part I:构造.热带气象学报,2014,30(4):675-686

6. 钟水新,陈子通,黄燕燕,等.地形重力波拖曳参数化方案在华南中尺度模式(GRAPES)中的应用试验.热带气象学报,2014,30(3):413-422

7. 张诚忠,陈子通,万齐林等.雷达反演水汽在华南前汛期短时临近降水预报应用试验.热带气象学报,2014,30(5):801-810

8. 张芷言,王宝民,邓雪娇,等. 广州地区PM1质量浓度对能见度的影响以及气溶胶吸湿增长因子.中国科学院大学学报.2014,31(3):397-402

9. 李婷苑,范绍佳,邓雪娇,等. 广州地区PM2. 5区域输送影响分析. 中国科学院大学学报.2014,31(3):397-402

10. 胡胜,张羽,邓文剑,等. 深圳新一代天气雷达山体阻挡的订正方案及效果检验. 热带气象学报,2014,30(1):1-10.

11. 纪忠萍,谷德军,孙广凤等. 2011 年夏季广东季风槽暴雨与准双周振荡. 热带气象学报,2014,30(3):432-442.

12. 郑腾飞,于鑫,包云轩.多角度高光谱对光化学反射植被指数估算光能利用率的影响探究.热带气象学报,2014,30(3):577-584.

13. 徐道生,陈子通,戴光丰等.对流参数化方案的改进对GRAPES模式台风预报的影响研究.热带气象学报,2014,30(2):210-218.

14. 邹德龙,冯业荣,梁巧倩等. 0~3小时短时定量降水预报算法研究.热带气象学报,2014,30(2):249-260.